Measurement: Area of Rectangles and Squares

Aim:

Calculate and compare the area of rectangles (including squares), including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(\mathrm{m}^{2}\right)$, and estimate the area of irregular shapes.
DfE Ready-to-Progress Criteria: Compare and calculate areas (5G-2).
To calculate the area of rectangles and squares.

Success Criteria:

I can multiply length by width to calculate area.
I can record area in standard units (square centimetres and square metres).

Key/New Words:

Area, rectangle, square, multiplication, length, width.

Resources:

Lesson Pack
Squared paper - as required

Preparation:

Differentiated Calculating Area Activity Sheet

- one per child

Diving into Mastery Activity Sheets

- one per child

Using Multiplication to Calculate Area Activity Sheet - as required

Prior Learning: It will be helpful if children have found the area by counting squares.

Learning Sequence

Counting the Squares: Look at the task on the Lesson Presentation and ask children to write a definition for
area. Ask three or four children for their definitions and discuss before showing them the definition on the Lesson
Presentation. Explain that we can calculate area by counting squares. Children work through examples and
calculate the area by counting squares.

two arrays shown. | Using Multiplication to Calculate Area: Explain how to use multiplication to calculate area. The Lesson |
| :--- |
| Presentation shows how to calculate the area of squares and rectangles by multiplying the length by the width. |
| The children can then use multiplication to calculate the area of the squares and rectangles drawn on a square |
| grid. Ask them to write a multiplication calculation to show how they calculated the area. The shapes shown on |
| the last slide are found in the Using Multiplication to Calculate Area Activity Sheet if you would prefer to print |
| this off instead. Can children multiply length by width to calculate area? |

\because	Calculating Area: Children complete the differentiated Calculating Area Activity Sheet, calculating the area of squares and rectangles by counting squares and multiplying the length by the width. Children recap their Children calculate the Children calculate the 4 times tables. They area of shapes using use multiplication to multiplication, using calculate the area of their knowledge of shapes of which one times tables and of Y5 side measures 4 cm . multiplication. They They then calculate the multiply the length by area of shapes using the width and record knowledge of other answers in cm^{2} and times tables. With m^{2}. They reason to find support, they reason the length of a missing to find the missing side where the area measurement of a and length of one side square and use this is given. to calculate area. Cm^{2} is given for them to record their answer.	\square
(\because	Diving into Mastery: Schools using a mastery approach may prefer to use the following as an alternative activity. These sheets might not necessarily be used in a linear way. Some children might begin at the 'Deeper' section and in fact, others may 'dive straight in' to the 'Deepest' section if they have already mastered the skill and are applying this to show their depth of understanding. Children answer fluency questions that require them to calculate the area of squares and rectangles. They apply their understanding of area to a worded problem where they need to calculate the area of a bathroom that has been tiled. Children calculate the lengths of a rectangle when the area, and clues about its sides, are given. They investigate whether statements are true or false, providing examples to demonstrate their thinking. They reason whether the rectangle with the largest area always has the largest perimeter too. Children use limited clues to find areas of related rectangles.	\bigcirc
8	Area of 24: On squared paper, ask the children to draw as many different rectangles as they can which have an area of $24 \mathrm{~cm}^{2}$. They should write a multiplication calculation to show how to calculate the area. Work through all possible permutations as shown on the Lesson Presentation.	\bigcirc

Explorelt

Writelt: Children write instructions for how to find the area of squares or rectangles.
Rollt: In pairs, children take turns to roll a dice twice each. The first roll gives the length of a rectangle and the second gives the width. Find the area of this rectangle. The person with the largest area scores one point. The first player to get to 10 points wins the game.
Measurelt: Children measure the length and width of (a flat surface of) rectangular objects around the room, and multiply the length by the width to calculate the area of the surface.

Learnlt: Children will find this visually exciting
useful tool for finding the area of rectangles and squares.

Maths

Measurement

Aim

- To calculate the area of rectangles and squares.

Success Criteria

- I can multiply length by width to calculate area.
- I can record area in standard units (square centimetres and square metres).

Counting the Squares

Count the squares to find the area of these rectangles and squares. Order them from smallest to greatest area.

Shape A

Using Multiplication to Calculate Area

We can calculate area by counting squares. This square has an area of 9 squares. Another way to calculate the area is to use multiplication.

Using Multiplication to Calculate Area

How could we use multiplication to calculate the area of this rectangle?

Using Multiplication to Calculate Area

To find the area of a rectangle, multiply the length by the width.

If we know the length and the width of a rectangle or square, we can calculate its area.

$$
\begin{gathered}
5 \mathrm{~cm} \times 4 \mathrm{~cm}=20 \mathrm{~cm}^{2} \\
\text { Area }=20 \mathrm{~cm}^{2} \\
\substack{1 \mathrm{~cm} \\
1 \mathrm{~cm} \\
\square}
\end{gathered}
$$

Calculating Area in cm^{2}

Calculate the area of this shape.

Units of Measure

The most commonly used measurements for calculating area are cm^{2} and m^{2}. Metres squared, or m^{2}, refers to a square with length and width of 1 m .

For each of the statements below, would you use cm^{2} and m^{2} to calculate the area? Discuss with your partner.

The area of a school playground

The area of a hamster's cage

The area of a building site for a new block of flats

The area of a laptop case

The area of a banknote

Calculating Area in \mathbf{m}^{2}

When we calculate an area in metres, we measure this in square metres.

We can also write this as $\mathbf{m}^{\mathbf{2}}$. This is because it describes how many 1 m by 1 m squares make $\begin{gathered}\text { Area } \\ 3\end{gathered}$

Imaaino that each sauaro unu soo on Do we need to do another multiplication? Why/why not?

Calculate the area of this shape.

An Area Problem

Marney wants to tile a water feature in her garden. Each tile is a square 3 cm by 3 cm . The tiles costs $£ 2$ each.

Marney's water feature is a rectangle with an area of $405 \mathrm{~cm}^{2}$. She has a budget of $£ 100$.

Does she have enough money to complete her project?

Area of 24

On squared paper, draw different rectangles with an area of $24 \mathrm{~cm}^{2}$.

Area of 24

Compare your answers to these calculations:

$$
3 \mathrm{~cm} \times 8 \mathrm{~cm}=\mathbf{2 4} \mathrm{cm}^{2}
$$

$$
\text { or } 8 \mathrm{~cm} \times 3 \mathrm{~cm}=\mathbf{2 4} \mathrm{cm}^{\mathbf{2}}
$$

$$
1 \mathrm{~cm} \times 24 \mathrm{~cm}=\mathbf{2 4} \mathrm{cm}^{2} \text { or } 24 \mathrm{~cm} \times 1 \mathrm{~cm}=\mathbf{2 4} \mathrm{cm}^{2}
$$

\square

Regent Studies| www.regentstudies.com

Next Steps

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

Next Steps

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

Calculating Area

To calculate the area of rectangles and squares.

1. Fill in the answers to the 4 times table. This will help you in the next question.

$1 \times 4=$	$4 \times 4=$	$7 \times 4=$	$10 \times 4=$
$2 \times 4=$	$5 \times 4=$	$8 \times 4=$	$11 \times 4=$
$3 \times 4=$	$6 \times 4=$	$9 \times 4=$	$12 \times 4=$

2. Calculate the area of these shapes in cm^{2} and write a multiplication fact to show how you found the area. You can use the 4 times table that you completed in the first question to help. The shapes in these questions may not be drawn to scale. The first one has been done for you.
a)

Multiplication fact:
$4 \times 2=8$
Area $=$ \qquad
Multiplication fact:
c)

Area $=$ \qquad cm^{2}
d)

Multiplication fact:

Area $=$ \qquad cm^{2}

Multiplication fact:

Area $=$ \qquad cm^{2}
b)

\qquad
e)

Multiplication fact:

Area $=$ \qquad cm^{2}
f)

Multiplication fact:
\qquad
Area $=$ \qquad cm^{2}
3. Now, use your knowledge of other times tables to calculate the areas of these 2 rectangles and 1 square and write a multiplication fact to show how you found the area.

Multiplication fact:

Area $=$ \qquad cm^{2}
b)

Multiplication fact:

$$
\text { Area }=\ldots \quad \mathrm{cm}^{2}
$$

c)

Multiplication fact:

Area $=$ \qquad cm^{2}

Calculating Area Answers

1. $1 \times 4=4$
$2 \times 4=8$
$3 \times 4=12$

$$
4 \times 4=16
$$

$7 \times 4=28$
$10 \times 4=40$
$8 \times 4=32$
$11 \times 4=44$
$12 \times 4=48$
2. a. Multiplication fact: $4 \times 2=8$ or $\mathbf{2 \times 4 = 8}$

Area $=8 \mathrm{~cm}^{2}$
b. Multiplication fact: $3 \times 4=12$ or $\mathbf{4 \times 3 = 1 2}$

Area $=12 \mathrm{~cm} 2$
c. Multiplication fact: $12 \times 4=48$ or $4 \times 12=48$

Area $=48 \mathrm{~cm}^{2}$
d. Multiplication fact: $\mathbf{7 \times 4 = 2 8}$ or $4 \times 7=28$

Area $=\mathbf{2 8} \mathrm{cm}^{2}$

Area $=32 \mathrm{~cm}^{2}$
f. Multiplication fact: $4 \times 4=16$

Area $=16 \mathrm{~cm}^{2}$
3. a. Multiplication fact: $\mathbf{8 \times 6 = 4 8}$ or $\mathbf{6 \times 8 = 4 8}$

Area $=48 \mathrm{~cm}^{2}$
b. Multiplication fact: $\mathbf{6 \times 1 1 = 6 6}$ or $\mathbf{1 1 \times 6 = 6 6}$

Area $=\mathbf{6 6} \mathrm{cm}^{2}$
c. Multiplication fact: $\mathbf{5 \times 5} \mathbf{= 2 5}$

Area $=\mathbf{2 5} \mathrm{cm}^{2}$

Calculating Area

1. Calculate the area of these shapes and use cm^{2} or m^{2} to record your answer. The shapes in these questions may not be drawn to scale. Remember to look carefully at the units of measure.
a)

b)

c)
\qquad
Area $=$ \qquad
Area $=$ \qquad
Area $=$ \qquad
d)

e)

f)
Area $=$ \qquad
Area $=$ \qquad
Area $=$ \qquad
2. Now, use your knowledge of multiplying larger numbers to calculate the area of these shapes and use cm^{2} or m^{2} to record your answer. Remember to look carefully at the units of measure.
a)
b)

c)

115 cm

Area $=$ \qquad Area $=$ \qquad Area $=$ \qquad
3. Can you find the missing measurements and use these to calculate the area of these 2 squares and 1 rectangle?
Top tip: think about what you know about squares and rectangles.
a)

b)
13m

Area $=$ \qquad
Area $=$ \qquad

c)

Area $=$ \qquad

Calculating Area Answers

1.

a. Area $=15 \mathrm{~cm}^{2}$
b. Area $=\mathbf{4 2} \mathrm{m}^{\mathbf{2}}$
c. Area $=18 \mathrm{~cm}^{2}$
d. Area $=48 \mathrm{~m}^{2}$
e. Area $=144 \mathrm{~cm}^{2}$
f. Area $=33 \mathrm{~cm}^{2}$
2. a. Area $=\mathbf{2 0 5} \mathbf{c m}^{\mathbf{2}}$
b. Area $=440 \mathrm{~m}^{2}$
c. Area $=3220 \mathrm{~cm}^{2}$
3. a. Children should recognise that 9 cm is the missing measurement.

Area $=81 \mathrm{~cm}^{2}$
b. Children should recognise that 13 cm is the missing measurement.

Area $=169 \mathbf{m}^{2}$
c. Children should recognise that 18 cm is the missing measurement.

Area $=108 \mathrm{~cm}^{\mathbf{2}}$

Calculating Area

To calculate the area of rectangles and squares. 000

1. Calculate the area of these shapes and use cm 2 or m 2 to record your answer. The shapes in these questions may not be drawn to scale. Remember to look carefully at the units of measurement.
a)

b)

c)

Area $=$ \qquad
Area $=$ \qquad
Area $=$ \qquad
2. Now, use your knowledge of multiplying larger numbers to calculate the area of these shapes and use cm^{2} or m^{2} to record your answer. Remember to look carefully at the units.
a)
b)
c)

$$
\text { Area }=
$$

Area $=$ \qquad Area $=$
d)
e)
f)

Area $=$ \qquad
Area $=$ \qquad
Area $=$ \qquad
3. These three shapes all have an area of $30 \mathrm{~cm}^{2}$. What are the measurements of the unlabelled sides? Show your working out.
a)

Missing side $=$ \qquad
b)

Missing side $=$ \qquad
c)

Missing side $=$ \qquad

Calculating Area Answers

1. a. Area $=54 \mathrm{~cm}^{2}$
b. Area $=84 \mathrm{~m}^{2}$
c. Area $=\mathbf{6 6} \mathrm{cm}^{\mathbf{2}}$
2. a. Area $=138 \mathrm{~cm}^{2}$
b. Area $=312 \mathrm{~m}^{2}$
c. Area $=15 \mathrm{~m}^{2}$
d. Area $=16 \mathbf{8 4 8} \mathrm{~cm}^{2}$
e. Area $=\mathbf{2 8 0} \mathbf{c m}^{\mathbf{2}}$
f. Children should recognise that $\mathbf{2 5 m}$ is the missing measurement. Area $\mathbf{= 6 2 5} \mathbf{m}^{\mathbf{2}}$
3. Children's working out for all questions should show understanding of the reciprocal relationship between multiplication and division - that you must divide the area by the given measurement to find the unlabelled measurement. Children may also use understanding of factor pairs to answer these questions.
a. 4 cm
b. 8 cm
c. 12 cm
1) a) $312 \mathrm{~cm}^{2}$
b) $520 \mathrm{~m}^{2}$
c) $15 m^{2}$
2) Answers will vary but may include rectangles with the following measurements:
$1 \mathrm{~cm} \times 30 \mathrm{~cm}, \mathbf{2 c m} \times 15 \mathrm{~cm}, 3 \mathrm{~cm} \times 10 \mathrm{~cm}, 5 \mathrm{~cm} \times \mathbf{6 c m}$
3) One square has an area of $\mathbf{2 5} \mathbf{c m}^{\mathbf{2}} .8$ tiles are already on the wall. Another column will mean that there are 10 in total.
$10 \times 25 \mathrm{~cm}^{2}=250 \mathrm{~cm}^{2}$
The total tiled area will be $250 \mathrm{~cm}^{2}$.
4) Length $=15 \mathrm{~cm}$

Width $=5 \mathrm{~cm}$
2) a) False. One example is:

The square has a perimeter of 20 cm and an area of $25 \mathrm{~cm}^{2}$ whereas the rectangle has a perimeter of 25 cm and an area of $25 \mathrm{~cm}^{2}$.

b) False. One example is:

This shape would have an area of $12.25 \mathrm{~cm}^{2}$.

c) True. One example is:

The two rectangles have a combined area of $80 \mathrm{~cm}^{2}$.

3) Romesh could be right but he could also not be.

Shape A could have a perimeter of 58 cm (length of 27 cm and width of $\mathbf{2 c m}$). Shape B could have a perimeter of 59 cm (length of 27.5 cm and width of 2 cm). However, the perimeter of shape B could also be $\mathbf{3 1} \mathbf{c m}$ (length of 10 cm and width of 5.5 cm) meaning that it would be smaller than the perimeter of shape A.

1) Garage: $\mathbf{6 0 m} \mathbf{m}^{\mathbf{2}}$

Living Room: $\mathbf{1 4 4 m}^{\mathbf{2}}$
Hallway: 36m²
Kitchen: 60m ${ }^{\mathbf{2}}$
Total Area: 300m ${ }^{\mathbf{2}}$
2) Children will find different solution to this problem. The total area of the four rooms should be $\mathbf{3 0 0} \mathbf{m}^{\mathbf{2}}$.

1) Calculate the area of the following rectangles:
a)

Area $=$ \qquad
b)

Area $=$ \qquad
c)

Area $=$ \qquad
2) Draw 3 different rectangles with an area of $30 \mathrm{~cm}^{2}$ on squared paper and label the lengths of their sides.

3) Miami is retiling their bathroom. Each tile is a square with width and length of 5 cm .

So far, they have tiled 4 columns of 2 tiles.
If Miami tiles another column, what is the total area they will have tiled?

1) A rectangle has an area of $75 \mathrm{~cm}^{2}$. The length is three times greater than the width. Calculate the length and width of the shape.
\qquad
2) Investigate the statements below. Are they true or false? Draw two shapes for each question to prove your answer.

3) Look at Romesh's statement below.

B

Do you agree with Romesh? Explain your answer.
\qquad
\qquad
\qquad

1) Here is the layout of one floor of a house not drawn to scale. Use the clues below to work out the area of each room and the total area of this floor of the house.

- The garage and the kitchen are identical rectangles.
- The whole house is 20 m long and 15 m wide.
- The garage has walls of 15 m and 4 m .
- The living room is a square.

Garage: \qquad
Living Room: \qquad
Hallway: \qquad
Kitchen: \qquad
Total Area: \qquad

2) Investigate a different way of dividing up the house into four rooms. The length and width of the whole house and its total area should be the same as in question 1 . Write some clues for a friend to solve.

1) Calculate the area of the following rectangles:
a)

b)

c)

2) Draw 3 different rectangles with an area of $30 \mathrm{~cm}^{2}$ on squared paper and label the lengths of their sides.
3) Miami is retiling their bathroom. Each tile is a square with width and length of 5 cm .

So far, they have tiled 4 columns of 2 tiles.

If Miami tiles another column, what is the total area they will have tiled?

1) Calculate the area of the following rectangles:
a)

b)

c)

2) Draw 3 different rectangles with an area of $30 \mathrm{~cm}^{2}$ on squared paper and label the lengths of their sides.
3) Miami is retiling their bathroom. Each tile is a square with width and length of 5 cm .

So far, they have tiled 4 columns of 2 tiles.

If Miami tiles another column, what is the total area they will have tiled?

1) A rectangle has an area of $75 \mathrm{~cm}^{2}$. The length is three times greater than the width. Calculate the length and
 width of the shape.
2) Investigate the statements below. Are they true or false? Draw two shapes for each question to prove your answer.
a) If a square and a rectangle whose sides are not all equal have the same area, they will have the same perimeter.
b) A square can never have an area greater than $9 \mathrm{~cm}^{2}$ but less than $16 \mathrm{~cm}^{2}$.
c) If I cut an $80 \mathrm{~cm}^{2}$ rectangle into 2 new rectangles, they will have a combined area of $80 \mathrm{~cm}^{2}$.
3) Look at Romesh's statement below.

Do you agree with Romesh? Explain your answer.

1) A rectangle has an area of $75 \mathrm{~cm}^{2}$. The length is three times greater than the width. Calculate the length and
 width of the shape.
2) Investigate the statements below. Are they true or false? Draw two shapes for each question to prove your answer.
a) If a square and a rectangle whose sides are not all equal have the same area, they will have the same perimeter.
b) A square can never have an area greater than $9 \mathrm{~cm}^{2}$ but less than $16 \mathrm{~cm}^{2}$.
c) If I cut an $80 \mathrm{~cm}^{2}$ rectangle into 2 new rectangles, they will have a combined area of $80 \mathrm{~cm}^{2}$.
3) Look at Romesh's statement below.

Do you agree with Romesh? Explain your answer.

1) Here is the layout of one floor of a house not drawn to scale. Use the clues below to work out the area of each room and the total area of this floor of the house.

- Thegarage and the kitchen are identical rectangles.
- The whole house is 20 m long and 15 m wide.
- The garage has walls of 15 m and 4 m .
- The living room is a square.

2) Investigate a different way of dividing up the house into four rooms. The length and width of the whole house and its total area should be the same as in question 1. Write some clues for a friend to solve.
3) Here is the layout of one floor of a house not drawn to scale. Use the clues below to work out the area of each room and the total area of this floor of the house.

- Thegarage and the kitchen are identical rectangles.
- The whole house is 20 m long and 15 m wide.
- The garage has walls of 15 m and 4 m .
- The living room is a square.

2) Investigate a different way of dividing up the house into four rooms. The length and width of the whole house and its total area should be the same as in question 1. Write some clues for a friend to solve.

Using Multiplication to Calculate Area

To calculate the area of rectangles and squares.

\qquad

Measurement | Area of Rectangles and Squares

To calculate the area of rectangles and squares.		
I can multiply length by width to calculate area.		
I can record area in standard units		
(square centimetres and square metres).		

Measurement \| Area of Rectangles and Squares
To calculate the area of rectangles and squares. I can multiply length by width to calculate area.
I can record area in standard units (square centimetres and square metres).

Measurement | Area of Rectangles and Squares

To calculate the area of rectangles and squares.		
I can multiply length by width to calculate area.		
I can record area in standard units		
(square centimetres and square metres).		

Measurement \| Area of Rectangles and Squares
 To calculate the area of rectangles and squares. I can multiply length by width to calculate area.
I can record area in standard units (square centimetres and square metres).

Measurement | Area of Rectangles and Squares

To calculate the area of rectangles and squares.		
I can multiply length by width to calculate area.		
I can record area in standard units (square centimetres and square metres).		

Measurement | Area of Rectangles and Squares

To calculate the area of rectangles and squares.		
I can multiply length by width to calculate area.		
I can record area in standard units (square centimetres and square metres).		

Measurement | Area of Rectangles and Squares

To calculate the area of rectangles and squares.		
I can multiply length by width to calculate area.		
I can record area in standard units (square centimetres and square metres).		

Measurement | Area of Rectangles and Squares

To calculate the area of rectangles and squares.		
I can multiply length by width to calculate area.		
I can record area in standard units (square centimetres and square metres).		

